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A coarse-grained Lattice Boltzmann equation is examined in which the effects of
unresolved (subgrid) scales are formally incorporated within a renormalized
relaxation time of the collision operator. Actual values of the renormalized
relaxation time are analyzed for the practical case of high-Reynolds flows past
slant bodies (airfoils).
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1. INTRODUCTION

Lattice kinetic theory, and most notably the Lattice Boltzmann equation
(LBE), have received considerable interest in the last decade as an efficient
technique to compute a variety of fluid flows, ranging from low-Reynolds
flows in porous media to highly turbulent flows in complex geometries. (1–5)

The main assets of LBE are (i) mathematical simplicity, (ii) physical
soundness and flexibility, (iii) computational efficiency especially on paral-
lel computers. In a recent time, it has been argued that the above assets
may turn even more valuable for the formulation of a renormalization-
group treatment of fluid turbulence from the standpoint of kinetic theory. (6)

This point of view is supported by mathematical and physical arguments,
as well as by recent methodological advances in the field.



The mathematical argument bears upon the simplicity of the formal
structure of the Lattice Boltzmann equation: a linear streaming operator,
as combined with a simple relaxation operator which encodes the entire
non-linearity of the Navier–Stokes equations in a purely local form.

On a more physical ground, the idea is to revive the use of kinetic
theory for the description of turbulent flows as a ‘‘gas of interacting
eddies,’’ along the spirit of the time-honored eddy-diffusivity theory. The
challenge is to go beyond the standard low-Knudsen perturbative expan-
sion which produces the Navier–Stokes equations out of the Boltzmann
equation for real molecules, by means of a generalized LBE in which the
non-perturbative interactions are lumped into an effective relaxation time
scale in the LBE collision operator.

At the same time, the LB method has been enriched with multiscale,
local-embedding capabilities, which extend its range of applicability to flow
situations with sharp and localized features. (5, 7) For instance, multiscale
LBE’s have been recently applied to turbomachine flow calculations, (7, 8)

and variable-grid-resolution commercial applications are now around for
a number of years. (4)

In this paper, we introduce a renormalized Lattice Boltzmann equa-
tion and present preliminary multiscale LBE simulations which help
assessing under which conditions coarse-graining of LBE may indeed
contain additional information for the modeling and simulation of fluid
turbulence in realistically complex geometries.

2. BASICS OF THE MULTISCALE LB METHOD

Multiscale Lattice Boltzmann schemes on Cartesian-like grids have
been discussed in detail in several previous works, and therefore we shall
present here only a cursory view of the basic elements. Our starting point is
the lattice BGK formulation (LBGK) of fluid dynamics: (9)

fi(xF+cFi, t+1)−fi(xF, t)=−w[fi−f
e
i ](xF, t) (1)

where the time step has been made unity for simplicity. Here fi is a set of
discrete populations representing the probability of finding a particle at
position xF at time t moving along the direction identified by the discrete
speed cFi. The right hand side of (1) represents the relaxation to a local
equilibrium fei in a time lapse w−1. This local equilibrium is usually taken
in the form of a quadratic expansion of a Maxwellian:

fei=rwi 51+
uacia
c2s
+
uaub(ciacib−c

2
sdab)

2c4s
6 (2)
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where latin subscripts run over spatial dimensions, cs is the sound speed
and wi is a set of weights normalized to unity. Once the discrete popula-
tions are known, fluid density and speed are obtained by (weighted) sums
over the set of discrete speeds:

r=C
i
fi, rua=C

i
ficia (3)

The multiscale implementation of the LB method is based on the following
steps. First, we perform a coarse-grain evolution (Collision+Streaming) step:

F −i(XF , t)=(1−W) Fi(XF , t)+WF
e
i (XF , t) (4)

Fi(XF+cFi, t+1)=F
−

i(XF , t) (5)

where F is the coarse-grain distribution, XF denotes a generic coarse node,
cFi=ncFi is the associated discrete speed (connectivity), n being the coarse-to-
fine grid blocking/refinement factor, and W is the relaxation parameter in
the coarse lattice. Finally, prime denotes post-collisional quantities. This
provides all the populations in the coarse-grain nodes. Next we need to
perform the fine-grain dynamics, actually n steps of size dt=1/n each,
tk=t+k/n, k=0, n−1:

f −i(xFm1, m2, m3 , tk)=(1−w) fi(xFm1, m2, m3 , tk)+wf
e
i (xFm1, m2, m3 , tk)

fi(xFm1, m2, m3+cFi/n, tk+1/n)=f
−

i(xFm1, m2, m3 , tk)

where xFm1, m2, m3=XF+(m1/n, m2/n, m3/n), m1=0,..., n−1, m2=0,..., n−1,
m3=0,..., n−1.

To ensure the same Reynolds number on both coarse and fine grids,
the corresponding relaxation parameters must relate as follows:

w=
W/n

1+
1−n
n
W

2

(6)

Manifestly, W=w in the limit n=1.
Therefore, n fine-grain steps complete the task of preparing for the

next coarse-grain step.
Such a two-grid procedure must include a further rescaling operation

in order to enforce fluxes continuity across the coarse-fine boundary. This
crucial condition is secured by imposing the continuity of the first order
non-equilibrium term fnei =fi−f

e
i which, by virtue of (1), in the low-

frequency limit simplifies to:

fnei ’ −w−1cia“af
e
i+O(Kn

2) (7)

Towards a Renormalized Lattice Boltzmann Equation for Fluid Turbulence 263



This leads to the following two scale transformations between the
post-collisional coarse and fine-grain populations:

F −i=F
e
i+(f

−

i−f
e
i ) weff (8)

and

f −i=f
e
i+(f̂

−

i−f̂
e
i ) w

−1
eff (9)

where hat means interpolation from the coarse grid and

weff=n
w(1−W)
W(1−w)

is the effective rescaled relaxation parameter.
Obviously, fei=F

e
i at the same node because the local equilibrium

depends on the macroscopic properties of the fluid. Note that the trans-
formations (8) and (9) reduce to identities in the limit nQ 1.

The final (pseudo)-algorithm reads as follows:

For t=0, number of timesteps do:

1. Move and Collide F on the coarse grid

2. Scale F to f

3. For all subcycles k=0,..., n−1 do:

(a) Interpolate F on the interface coarse-to-fine grid

(b) Scale F to f via Eq. (9) on the interface coarse-to-fine grid

(c) Move and Collide f on the fine grid

End do subcycle

4. Scale back f to F via Eq. (8) on the interface fine-to-coarse grid

End do timesteps

Besides allowing selective grid refinements, typically around solid bodies,
the previous procedure provides a potential operational candidate to test
kinetic-based renormalisation-group formulations of fluid turbulence. (6)

3. TURBULENCE MODELING

Direct simulations of fluid turbulence are bound to be severely under-
resolved for many years to come, and consequently the problem of repre-
senting the effects of unresolved short-scales on the resolved ones (Large
Eddies) remains key to both computational fluid dynamics and the theory
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of turbulent flows. Mathematically, the problem of turbulence modeling is
easily stated: find a functional correlation between the Reynolds stress
tensor:

sab — Ou −au
−

bP (10)

and the resolved flow field Ua. In the above u −a represents the sub-grid
component of the flow field, e.g., the one fluctuating at scale shorter than
the grid spacing. The simplest, and still very useful, type of correlation
is based on the notion of eddy-diffusivity. The idea is that short-scale fluc-
tuations respond linearly to the gradients of the resolved velocity field, the
constant of proportionality being precisely the eddy diffusivity:

sab=nESab (11)

where

Sab=
“aUb+“bUa

2
(12)

is the resolved strain tensor. The eddy-diffusivity assumption is clearly
borrowed from kinetic theory: a turbulent flow is likened to a gas of eddies,
the smallest ones being enslaved to the local equilibrium generated by the
large ones, and acting upon them like a diffusive process. It is also extre-
mely convenient from the mathematical point of view, since it leaves the
coarse-grained Navier–Stokes equations invariant, only with a renor-
malized, turbulent viscosity nT=nE+n. This analogy is inspiring, but often
fails on quantitative grounds, basically because turbulent flows do not offer
the type of scale separation between molecular and hydrodynamic scales
which lies at the heart of kinetic approach to fluid dynamics. The whole
field of turbulence modeling is devoted to the attempts to cope with this
fundamental lack of scale separation. The simplest models just replace the
constant nE with a local algebraic function of the (norm of) shear tensor
Sab. More sophisticated, and very popular models, let the eddy viscosity
respond dynamically to the turbulent field by linking it to the actual
values of the turbulent kinetic energy k and energy dissipation rate E, via
nE ’ k2/E, where k and E evolve in time according to phenomenological
transport equations. (10) More fundamental approaches, based on dynamic
renormalization group (RG) techniques, derive such transport equations
from recursive decimation of fast scales. (11) None of these approaches
however proves capable of solving the turbulence modeling problem in full
generality. It is therefore of interest to explore whether/what discrete kinetic
theory can contribute to this complex scenario.
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4. A REAL-SPACE RENORMALIZED LBE

In this section we shall discuss the potential of LBE for large-eddy
simulation of fluid turbulence. The advocated assets of LBE for direct
numerical simulations are:

• The streaming operator is linear

• The collision operator, which hides the entire non-linearity of fluid
equations, is purely local in space

As observed in, (6, 12) these assets might even be furthered in the formulation
of a renormalization-group approach based on kinetic theory rather than
on continuum fluid equations. First, we observe that points 1 and 2 help
taming one of the major hurdles of real-space renormalization, namely the
proliferation of coupling constants from fine to coarse levels. Indeed, as we
shall show shortly, the LBE formalism naturally conveys the effect of
unresolved scales into a single scalar parameter, the renormalized relaxa-
tion frequency. Therefore, the renormalized LBE naturally preserves its
invariance under the RG transformation. To illustrate the point, we shall
refer to the continuum, differential form of LBE. Let us consider one step
of the RG procedure.

First, rescale space-time by an infinitesimal amount: l=1+E, E° 1:

xQ x̃=lx, tQ t̃=lt, v=ṽ, f̃=f (13)

The transformed differential LBE l(“t̃+ṽ“x̃) f̃=−w[f̃− g̃] produces
the trivial dimensional scaling w̃=w/l. This simply means that in a lattice
with l times larger spacing, the relaxation frequency w must be made l
times smaller to keep the same Reynolds number. Let us now interpret f in
the LBE as the result of coarse graining over a finite volume of size hD+1,
where h — Dt and c=1, so that Dx=h. This association is sound, since it is
known that LBE can be obtained from the differential LBE by using a
finite volume discretization with upwind interpolation and first-order time
marching. In this case, the projector Ph from continuum to finite-scale h is
simply a space-time integral over a 4-dimensional space-time cublet of
size h:

fh — Ph f=
1
h4

F fdxF dt (14)

It is clear that the space-time scaling can not leave the local equilib-
rium invariant because the quadratic dependence on f introduces subgrid
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fluctuations Of2P−OfP2, where brackets stand for space-time integration
over a 4-cublet of volume (lh)4. Let us first write:

fi=gi+f
ne
i

on the fine grid h=1, where superscript ne denotes kinetic fluctuations at
scale h and gi is the local equilibrium at the same scale.

Coarse-graining with projector Plh delivers:

OfiP=OgiP+Ofnei P

which also rewrites as:

OfiP=gi(OfiP)+dGi+Ofnei P

where the extra-contribution:

dGi — Ogi(fi)P−gi(OfiP) (15)

contains the subgrid fluctuations generated by the quadratic dependence
of the local equilibrium on the local flow speed. From Eq. (2) we write
explicitly

dGi=
wi

2c4s
(ciacib−c

2
sdab) sab

where sab is the Reynolds stress tensor at scale lh, which includes all sub-
grid fluctuations within [h, lh] (denoted by tilde). With the notation:
Fi — OfiP and Gi — gi(OfiP), F

ne
i — Fi−Gi, the coarse-grained LBE takes

the form:

Fi(x+lci, t+l)−Fi(x, t)=−
w

l
[Fi−Gi−dGi] l (16)

The requirement of formal invariance of LBE under a complete renor-
malization cycle suggests to reabsorb subgrid fluctuations into a renormalized
relaxation parameter w(l) such that the renormalized LBE takes the
following final form:

Fi(x+lci, t+l)−Fi(x, t)=−wi[l][Fi−Gi] l (17)

where we have set:

wi[l]=
w

l
(1−si[l]) (18)
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and

si[l] —
dGi(l)
Fnei (l)

(19)

This latter quantity represents the ratio of subgrid to kinetic fluctua-
tions at scale l, and formally collects all non-linear effects of subgrid
physics. Neglect of these non-linearities would yield the trivial dimensional
scaling w(l)=w/l.

From these definitions it is clear that sub-grid fluctuations are
dynamically equivalent to kinetic fluctuations at scale l.

The formal elegance of the renormalized LBE is apparent, and so is
the transparence of its physical derivation. At no point did we have to
assume that subgrid fluctuations (their variance) scale with the gradient of
the resolved equilibrium, as typically required in a continuum approach in
order to preserve functional invariance of the Navier–Stokes equation
under coarse-graining. On the contrary, it is the mathematical LBE for-
mulation itself that conveys subgrid contributions into a renormalized
frequency in a very natural way.

Of course, the question is: what new insights are to be expected from the
renormalized LBGK as compared to the Navier–Stokes picture?

Apparently, not much at all, since we are still left with the usual
problem of expressing the Reynolds stress tensor as a function(al) of the
resolved field. However, a slightly deeper thought reveals that the renor-
malized LBE might not converge to the corresponding coarse-grained Navier–
Stokes equations, because the assumption of small mean-free path (low
Knudsen number) might break-down at the coarser levels of the coarse-
graining procedure.

Symbolically:

OLBEP=ONSEP+HOT (20)

where brackets stand for coarse-graining and HOT means higher-order-
terms associated with non-adiabatic departures from local equilibrium
(which are by definition negligible at the finest scales, where it is under-
stood that LBE is equivalent to the Navier–Stokes equations). Of course,
there is no guarantee that HOT correctly describes the physics of turbulent
fluctuations. However, we are least guaranteed that the equation (17) con-
tains a fully non-perturbative resummation of an infinite series of diagrams
associated with non-small Knudsen numbers, while it is well known that
any finite expansion beyond second order (Navier–Stokes) in terms of dif-
ferential operators is doomed to instability. In view of the lack of scale
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separation discussed previously, it seems therefore that RGLBE provides
a reasonable starting point in the direction of trying to go beyond eddy-
diffusivity models of fluid turbulence.

4.1. Analysis of the Renormalized LBE

To analyse the qualitative scenarios associated with the renormalized
LBE it is convenient to recast the relation (18) in terms of a corresponding
renormalized relaxation time:

y(l)=
ly(1)
1−s(l)

(21)

with the obvious condition s(1)=0.
Three characteristic regions stand out:

1. s < 0,

2. 0 < s < 1

3. s > 1

Let us for simplicity refer to the case in which Fi relaxes to its local
equilibrium Gi from above (see Fig. 1).

In terms of local relaxation, the condition s < 0 means that subgrid
fluctuations move the renormalized equilibrium:

Fei — Gi+dGi

farther apart from Fi as compared to the bare equilibrium Gi. The first
region is therefore characterized by a decreasing effective relaxation time,
hence increasing effective Reynolds number, at large scales. This is not
expected to be the case for turbulent flows in which small eddies are known
to relax faster than large ones.

The second region is characterized by the opposite behaviour: the
subgrid fluctuations take the renormalized equilibrium closer to Fi. This
corresponds to an increasing effective relaxation time, so that the effective
Reynolds number becomes smaller and smaller at large scales, This is the
standard infrared-free scenario in which the renormalisation procedure is
expected to apply. Within this region, we recognize that the relaxation time
may eventualy get so high that the corresponding mean-free path of the
small eddies may no longer be small enough to justify the assumption of
small departures from local equilibrium around large ones. This is poten-
tially the most interesting region for LBE-based turbulence models, since it
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Fig. 1. Schematic view of the bare (dashes) and renormalized (solid) relaxation process for
the three cases s < 0, 0 < s < 1, and s > 1 respectively.

is here that the additional information associated with the renormalized
LBE—if any—must reside.

Finally, the third region marks situations in which coarse-graining
fluctuations are strong to the point of driving the viscosity formally nega-
tive, through a sort of ‘‘phase-transition’’. The physical meaning of this
negative viscosity as follows. What the condition s > 1 means is that the
renormalized equilibrium Fei ‘‘overshoots’’ the actual value of Fi so that
effective relaxation takes place along the opposite direction (growing Fi) as
compared to bare relaxation. This scenario is physically associated with
violent bursts and local instabilities. It is probably a desirable feature for
the effective viscosity to be occasionally allowed to decrease, and even
become negative, under coarse-graining, for this provides the potential
capability of capturing the effects of the aforementioned instabilities for the
important case of transitional turbulence. Of course, the practical issue of
numerical stability in this third region remains entirely open.

This completes the qualitative analysis of the renormalized LBE.
It is clear that the practical value of the renormalized LBE hings criti-

cally on the possibility of deriving a concrete expression for the effective
relaxation parameter as a functional of the resolved flow field. We shall
return to this point shortly.
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5. PRELIMINARY TESTS: FLOW PAST AN AIRFOIL

The above ideas have been tested on a two-dimensional flow of prac-
tical interest, using a multiscale LBE code with local grid-refinement capa-
bilities. Before plugging back into the renormalization issues, we provide
some details of preliminary validation tests.

5.1. Validation Tests

As a preliminary testbed for the ideas discussed above, we have
validated the multiscale method through a series of numerical simulations
of a vortical flow around an airfoil in cascade at Re=5000 and angle of
attack a=20°. The geometry of the cascade is described in details in
ref. 13. Flows around airfoils at high Reynolds numbers contain regions of
large gradients in some localized zones of the curvilinear boundaries (e.g.,
in the vicinities of the leading or trailing edge of an airfoil). Therefore here
we resolve the flow around an airfoil on a set of multiple embedded grids.
Multiple embedding means further local refinement of previously refined
grids. The interface conditions (5) in the case of a crossing boundary are
extended by linear interpolation of the post-collision distribution functions
from the ‘‘fluid’’ to the ‘‘rigid’’ nodes of the coarse-to-fine grid interface.
Boundary-fitting formulas for no-slip conditions on the surface of the
airfoil are applied in all nodes neighbouring to the boundary on the finest
grid in this region.

For the validation of the results obtained with the multiscale LBGK
code the same flow is computed with the commercial CFD code FLUENT 5
using constant density. The basic hybrid grid A (20997 nodes, grid genera-
tor GAMBIT) is shown in Figs. 2a and 2b. To provide the finer spatial
resolution in the regions of larger gradients the basic grid A is refined in the
vicinity of an airfoil by factor 2 (grid B, 65368 nodes, Fig. 2c). Computa-
tions with the multiscale LBGK code are performed on the set of
embedded grids G1, G2, G3, G4. Their relative positions in the vicinity of an
airfoil are shown in Fig. 2d. The coarsest grid G1 covering the whole com-
putational cell consists of 350×81 nodes. In addition the instantaneous
streamlines of the flow in periodical regime are shown in Fig. 2d.

At first, the solution obtained with the multiscale LBGK scheme on
the set of multiple embedded grids G1, G2, G3, G4 with refinement ratio
8:2:1:1 andMnum=0.09 is compared with those obtained with FLUENT 5.
The curves of the lift coefficients CL corresponding to the forces acting
perpendicular to the chord of the airfoil are plotted in Figs. 3a and 3b. The
results obtained with FLUENT 5 are shown in Figs. 3a and 3b with dotted
curves. The curves are marked with alphabetic characters defining a hybrid
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Fig. 2. (a) hybrid grid A used in the numerical simulations with FLUENT 5 in the whole
computational cell. (b) Enlarged part of the grid A in the vicinity of an airfoil. (c) Enlarged
part of the grid B in the vicinity of an airfoil. (d) Boundaries of embedded Cartesian grids
G2, G3, G4 used in the numerical simulations with the multiscale LBGK code; instantaneous
streamlines in the vicinity of an airfoil in periodical regime.

grid used in the computations (A or B). Time-stepping is marked on all
curves with solid circles.

The unsteady solver in FLUENT 5 is implicit and segregated with
SIMPLE pressure-velocity coupling. Under-relaxation factors in pressure
and momentum equations are chosen as 0.3, 0.8.
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Fig. 3. Unsteady periodical flow around an airfoil in cascade at Re=5000, a=20o.
Temporal development of the lift coefficient obtained with the multiscale LBGK code on
the set of multiple embedded grids G1, G2, G3, G4 with refinement ratio 8:2:1:1 and FLUENT 5.
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In the simulations shown in Fig. 3a a second order accurate in time
solver is used with the default spatial discretization: second order accurate
for viscous terms and first order upwind for convection terms in governing
equations. Different convergence criteria, based on the values of residuals
in continuity and momentum equations, are used in the simulations
presented in Fig. 3a: 1 · 10−4 for curves A, B1 and 5 · 10−3 for curve B2.

In Fig. 3b the results of the computations with second order accurate
in space solver on grid B are presented, whereas the accuracy in time is
varied from first order (Fig. 3b, curves Bg

1 , B
g
2 ) to second order (Fig. 3b,

curve Bg
3 ). Different convergence criteria based on the values of resi-

duals in continuity and momentum equations are used in the simulations
presented in Fig. 3b: 5 · 10−3 for curve Bg

1 and 1 · 10−3 for curve Bg
2 , B

g
3 .

We wish to emphasize that during the iterations residuals in momen-
tum equations decrease faster than the residual in continuity equation, so
the convergence criterion in our simulations with FLUENT 5 is defined
virtually by the value of the residual in continuity equation.

Figures 3a and 3b show that the averaged values of the lift coefficients
obtained with FLUENT 5 on grids A, B are in the good agreement. The
amplitude of the oscillations of the lift coefficient CL and the frequency of
the flow obtained with FLUENT 5 depends on the spatial and temporal
resolution and convergence criterion and vary in order of 10% in our sim-
ulations. This sensitivity of time-dependent wake flows behind airfoils to
numerical influences, even in the range of the truncation error, was found
also in ref. 13.

As one can see from Figs. 3a and 3b the solution obtained with the
multiscale LBGK scheme is well within the sensitivity range of the conven-
tional CFD solver for time-dependent incompressible flows.

In addition the grid resolution study of the results obtained with the
multiscale LBGK solver was performed. The results for the lift coefficients
obtained on the set of multiple embedded grids G1, G2, G3, G4 with refine-
ment ratio 12:2:1:1 and 8:2:1:1 are shown in Fig. 4. The values of the
relaxation parameters on grids G2−G4 are wG2=1.863, wG3=wG4=1.744
for refinement ratio 12:2:1:1 and wG2=1.907, wG3=wG4=1.822 for
refinement ratio 8:2:1:1. On the coarse grid G1, where the flow can be
considered as inviscid, an artificial value of the relaxation parameter
wG1=1.85 instead of the ‘‘right’’ value wG1=1.976 was used according to
the concept of artificial viscosity for inviscid flow simulations. (8)

5.2. Monitoring LBE Subgrid Fluctuations

To assess the nature of subgrid fluctuations and the high-Knudsen
issue discussed previously, we monitor the kinetic and subgrid fluctuations
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Fig. 4. Unsteady periodical flow around an airfoil in cascade at Re=5000, a=20°.
Temporal developmemt of the lift coefficient obtained with the multiscale LBGK code on the
set of multiple embedded grids G1, G2, G3, G4 with refinement ratio 12:2:1:1 (bold solid lines)
and 8:2:1:1 (dotted lines).

at a given spatial location, marked in Fig. 2d with solid circle. The visuali-
sation of the flow confirms that the reference point is chosen in the zone of
the vortex shedding. At this spatial location we measure both the ratio s of
subgrid to kinetic fluctuations, and the coarse-grained ‘‘Knudsen number’’
defined as:

Ki —
Fi−Gi
Fi

With this definition, the total kinetic+subgrid relative departure at scale l
(‘‘turbulent Knudsen number’’) is given by:

Ki(s) —
Fi−Gi−dGi

Fi
=Ki(1−si)

For simplicity, we confine our attention to north-east propagating distri-
butions, f2, whose non-equilibrium components respond to transverse
shear components.

Towards a Renormalized Lattice Boltzmann Equation for Fluid Turbulence 275



In Figs. 5a and 5b we show s2 as measured at two distinct coarse-
graining scales, l=3 and l=11. From these figures we see that s(l) grows
more than linearly with the size of the averaging box and attains values
within the range [0, 1] the region, as expected. With l=11, we measure a
maximum around s ’ 0.6, which corresponds to an enhanced relaxation
y(11)/11y(1) ’ 10/4=2.5, hence only moderately higher than the purely
dimensional value. Given that the bare value of 11y(1) ’ 0.012, the
renormalized relaxation time y(11) ’ 0.03 is still small enough to justify the
hydrodynamic limit also at the coarsest scale.
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Fig. 5. Unsteady periodical flow around an airfoil in cascade at Re=5000, a=20°.
(a) Temporal development of dG2/F

ne
2 in the reference point, l=3. (b) Temporal development
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ne
2 in the reference point, l=11. (c) Temporal development of |F2−G2 |/F2 in the

reference point, l=3, poutlet/c
2
s=3. (d) Temporal development of |F2−G2 |/F2 in the reference

point, l=11, poutlet/c
2
s=3.
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The time evolution of the turbulent Knudsen number is displayed in
Figs. 5c and 5d. From these figures, we see that indeed K° 1 and remains
almost the same on both coarse-grained grids. We conclude that, for the
present flow, the renormalized LBE is not expected to contain any sig-
nificant information as compared with the coarse-grained Navier–Stokes
equations.

The above conclusions might well change for highly turbulent flows in
which stronger fluctuations are expected to populate the region in the
vicinity of s=1.

5.3. Native Kinetic-Theoretical Turbulence Models

Monitoring the high-Knudsen issue in coarse-grained LBE simulations
is important since it sheds light into the critical question of whether coarse-
grained kinetic theory can yield additional information as compared to
coarse-grained fluid-dynamics. However, it can hardly provide an opera-
tional input to the problem of turbulence modeling.

To this purpose, one has to link the renormalized relaxation time
to coarse-grained observables. A practical strategy (we are indebted to
Dr. V. Yakhot for clarifying this point) (14) is to express the effective relaxa-
tion time in the form of a semi-empirical functional of the main turbulent
observables

y=
k
E
Y(g) (22)

where k is the turbulent kinetic energy, E the turbulent energy dissipation,
y0 the bare relaxation time and g=y0 |S| a dimensionless strain parameter
measuring the departure of turbulent fluctuations from local equilibrium.

By definition,Y is significantly different from unit value only in regions
where turbulence is highly off-equilibrium (typically near-wall regions),
while away from these regions Y(g)=1, corresponding to the standard
k–E model. Once a given Y(g) is specified, the effective relaxation time can
be updated self-consistently by coupling LBE with allied dynamical equa-
tions for k and E. It should by now be clear that specifying a self-consistent
relaxation time goes in principle beyond effective-viscosity representations
because the renormalized LBE contains corrections to all orders in the
‘‘turbulent’’ Knudsen number.

This type of simulations, with Y=1, (standard k–E turbulence model)
have been recently performed with satisfactory results. (8) Of course many
issues still need further exploration, for instance the symmetry requirements
on the set of discrete speeds in order to ensure the correct representation
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of the higher order terms. (15) Going beyond these LBGK-k–E turbulence
models represents, in our opinion, one of the most tantalizing directions of
future Lattice Boltzmann research.
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